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A B S T R A C T

It is desirable for a pharmaceutical final dosage form to be manufactured through a quality by design
(QbD)-based approach rather than a quality by testing (QbT) approach. An automatic feedback control
system coupled with PAT tools that is part of the QbD paradigm shift, has the potential to ensure that the
pre-defined end product quality attributes are met in a time and cost efficient manner. In this work, an
advanced hybrid MPC–PID control architecture coupled with real time inline/online monitoring tools and
principal components analysis (PCA) based additional supervisory control layer has been proposed for a
continuous direct compaction tablet manufacturing process. The advantages of both MPC and PID have
been utilized in a hybrid scheme. The control hardware and software integration and implementation of
the control system has been demonstrated using feeders and blending unit operation of a continuous
tablet manufacturing pilot plant and an NIR based PAT tool. The advanced hybrid MPC–PID control
scheme leads to enhanced control loop performance of the critical quality attributes in comparison to a
regulatory (e.g. PID) control scheme indicating its potential to improve pharmaceutical product quality.
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1. Introduction, background and objectives

Real time inline/online process monitoring and closed-loop
feedback control systems enable the transition toward a more
desirable quality by design (QbD) paradigm, rather than quality by
Abbreviation: QbD, quality by design; QbT, quality by testing; PAT, process
analytical technology; MPC, model predictive control; PID, proportional integral
derivative; PI, proportional integral; PCA, principal component analysis; NIR, near
infrared; FDA, Food and Drug Administration; ERC-SOPS, Engineering Research
Center for Structured Organic Particulate Systems; API, active pharmaceutical
ingredient; OPC, OLE (object linking and embedding) process control; MPA, multi-
purpose analyzer; APAP, acetyl-para-aminophenol; SMCC, silicified microcrystal-
line cellulose; MgSt, magnesium stearate; AI, analog input; AO, analog output; PLS,
partial least square; nm, nanometer; SNV, standard normal variate; PC, principal
component; RMSEP, root mean square error of prediction; RSEP, relative standard
error of prediction; OLUPX, online unscramblerX prediction engine; SISO, single
input single output; PM, penalty on move; PE, penalty on error; ITAE, integral of
time absolute error; RMSE, root mean square error; RSD, relative standard
deviation.
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testing (QbT) based manufacturing of the next generation of
pharmaceutical products. This approach utilizes an optimal
consumption of time, space and resources, while satisfying the
high regulatory expectations, flexible market demands, operation-
al complexities and economic limitations. As a closed-loop optimal
control based method with explicit use of a process model, model
predictive control (MPC) has proven to be a very effective control
strategy over the last thirty years and has been widely used in
process industries such as oil refining, bulk chemical production
and aerodynamic (Singh et al., 2013a). However, in comparison to
PID (proportional-integral-derivative) control, MPC is more
complex to implement and is computationally expensive. There-
fore, a hybrid strategy in which the advantages of both MPC and
PID can be integrated is desirable. However, because of the
different level of complexities associated with powder handling,
the implementation of an efficient control strategy for real time
product quality assurance in pharmaceutical processes is still an
open area of research. The main complexities are related to the
integration of different control hardwares and softwares, the
integration of the plant with a centralized control platform, the
real time sensing of control variables and the implementation of
control-loops.
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Nomenclature

Ci API composition (%)
Cset(t) Set point (%)
CðtÞ Average API composition (%)
n, N Number
KC Gain
KD Rate (s)
t Time (s)
tf Operation time (s)
tI Reset time (s)
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Currently, pharmaceutical companies are facing several chal-
lenges because of the high cost and lengthy time involved in new
drug product development (approx. $1.2 billion; 10–15 years)
(FDA, 2004; PhRMA, 2012; Singh et al., 2013b), reduced effective
patent life, higher regulatory constraints and relatively inefficient
quality by testing (QbT)-based batch product manufacturing. In
recent years, the interest has grown rapidly to fully automate
pharmaceutical manufacturing in order to face these challenges
more efficiently (Muzzio et al., 2013). Continuous manufacturing
processes operate at or near steady state, allowing for closed-loop
control of the entire operation, which leads to a more robust and
reliable manufacturing process. Moreover, because continuous
processes reach the desired steady state in just a few minutes, they
enable true quality by design (QbD)-based manufacturing.
Currently, there is a high level of interest in the pharmaceutical
industry in continuous-manufacturing strategies, integrated with
inline/online monitoring tools, and efficient control systems. These
strategies can accelerate the full implementation of the QbD
paradigm for the next generation of pharmaceutical products. In
addition to its flexibility and time and cost-saving features,
continuous manufacturing is intrinsically steady and therefore
easily amenable to model predictive design, optimization, and
control methods. These methods have proven to be effective
approaches to improving operational efficiency and have been
widely used in various process industries. Excitingly, in the
pharmaceutical industry, the application of control systems is a
virgin territory, wide open to researchers and technology providers
(Muzzio et al., 2013). Batch manufacturing, although traditionally
used for drug manufacturing, has a number of disadvantages
including the larger footprint of the equipment, higher equipment
and operational costs, poorer controllability, and lower product
quality (Singh et al., 2012a).

There are still different levels of complexity involved in the
implementation of the control system in pharmaceutical
manufacturing involving solid dosages forms. For example,
integration of control hardware, software and sensors with process
equipment is complex because there is no standardization of
pharmaceutical equipment for control perspectives. Most of the
pharmaceutical processing equipment (supplied from individual
vendors) comes with standalone, black-box operating systems
which are not compatible yet with the standard control platforms
(e.g. DeltaV (Emerson), PCS7 (Siemens)). The consequences and
challenges of controlling process variables are still not clear to the
pharmaceutical companies, preventing them from investing
resources in implementing control systems. Difficulties in real-
time online/inline monitoring of the process variables that need to
be controlled are another barrier that prevents the implementa-
tion of control systems. Near infrared (NIR) spectroscopy has raised
a lot of interest in the pharmaceutical industry because it is a rapid,
non-invasive analytical technique and there is no need for
extensive sample preparation (Blanco et al., 1998; Lavine, 1998;
Jørgensen, 2000). Spectroscopic sensors (e.g. NIR, Raman), though
not new to the pharmaceutical industry, have generally not been
applied for feedback control. The most suitable control strategies
(PID, PI, MPC, feed forward controller, feedback controller) for
tablet manufacturing processes is still unknown. Furthermore,
there is no standard control package commercially available that
can be employed to implement a control system in the
pharmaceutical plant.

Process understanding is vital for efficient control system
design and implementation. Extensive model-based (Barrasso
et al., 2013a, 2013b; Barrasso and Ramachandran, 2012;
Boukouvala et al., 2012, 2013; Sen et al., 2012, 2013; Sen and
Ramachandran, 2012; to name a few) as well as experimental
(Portillo et al., 2010; Vanarase et al., 2010, 2011; Vanarase and
Muzzio, 2011) studies have been done to understand the
continuous tablet manufacturing process. Few attempts have
been made toward the design of a control system for the tablet
manufacturing process (Singh et al., 2010a, 2012a, 2013a, 2014a,
2014b; Hsu et al., 2010a, 2010b; Ramachandran and Chaudhury,
2012; Burggraeve et al., 2012; Bardin et al., 2004; Sanders et al.,
2009; Gatzke and Doyle 2001; Long et al., 2007; Pottmann et al.,
2000). However, no attempts have been made to implement the
advanced MPC–PID hybrid control system to a continuous tablet
manufacturing pilot plant.

In this manuscript, an advanced hybrid MPC–PID control
system has been implemented into continuous feeders and
blender unit operations of a direct compaction tablet manufactur-
ing pilot plant for closed-loop operation. An NIR sensor, chemo-
metrics model and tools, a PAT data management tool, OPC
communication protocols and a standard control platform have
been used for real time feedback control. MPC relevant linear time
invariant model has been identified in silico through step response
test based on in-line real time NIR measurements. The perfor-
mance of hybrid MPC–PID control scheme has been compared with
basic cascade PID scheme. An additional layer of PCA based
supervisory control has been also added.

2. Direct compaction process

2.1. Pilot plant

A continuous direct compaction tablet manufacturing pilot
plant has been installed and situated at ERC-SOPS, Rutgers
University. The snapshot of the pilot plant is shown in Fig. A1
(whole plant is not shown). The pilot plant is built in three levels at
different heights to take advantage of gravitational material flow.
The top level is used for feeder placement and powder storage, the
middle level is used for delumping and blending, and the bottom
level is used for compaction. Each level consists of a 10 � 10 square
feet working area. There are three gravimetric feeders -with the
capability of adding more- that feed the various formulation
components (API, excipient etc.). A co-mill is also integrated after
the feeder hopper primarily for de-lumping the powders and
creating contact between components. The co-mill eliminates any
large, soft lumps within the powder. The lubricant feeder is added
after the mill to prevent over lubrication of the formulation in the
mill. These feed streams are then connected to a continuous
blender within which a homogeneous powder mixture of all the
ingredients is generated. Subsequently, the outlet from the blender
is fed to the tablet press via a rotary feed frame. The powder blend
fills a die and is subsequently compressed to create a tablet.

2.2. Process description

A flowsheet model description of the direct compaction
continuous tablet manufacturing process is shown in Fig. 1. The



Table 1
Key control variables, corresponding manipulating variables and sensors.

Key control variables Manipulating
variables

Sensors

API composition Ratio set point NIR
Powder level in instrumented
hopper

Turret speed Webcam

Tablet weight Fill depth Check master
(Fette)

Tablet hardness Fill depth (shared) Check master
(Fette)

Fig. 1. Direct compaction tablet manufacturing process and control architecture.
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process schematic represents a pilot plant situated at the Engineer-
ing Research Center forStructuredOrganic Particulate Systems (ERC-
SOPS),RutgersUniversity. Detailsof the processdynamics of thepilot
plant have been previously reported (Vanarase and Muzzio, 2011),
and the open-loop operation has been extensively studied
(Boukouvala et al., 2012; Boukouvala et al., 2013; Portillo et al.,
2009, 2010; Vanarase et al., 2010; Vanarase et al., 2011).

The process flowsheet as shown in Fig. 1 has been simulated
using the simulation software gPROMS (Process Systems Enter-
prise, http://www.psenterprise.com). The integrated flowsheet
model for direct compaction continuous tablet manufacturing
process that has been used for design of the control system has
been previously reported (Boukouvala et al., 2012, Singh et al.,
2013b). The detailed developments of these models are reported
elsewhere as summarized here. The mathematical model for
milling (Barrasso et al., 2013a, 2013b) and powder blending, an
important but complex unit operation, has been previously
developed (Sen et al., 2012, 2013; Sen and Ramachandran,
2012). The model for the tablet compression process is previously
reported in Singh et al. (2010a). This model is based on the
Kawakita powder compression model (Kawakita and Ludde, 1971)
and tablet hardness model described in Kuentz and Leuenberger
(2000). The dissolution model was adapted from Kimber et al.
(2011). The models for the different unit operations have been
developed and included in gPROMS library to facilitate the
integrated flowsheet modeling. The development of the integrated
process flowsheet using individual unit operation models has been
previously demonstrated (Boukouvala et al., 2012, 2013). The
models involved in direct compaction tablet manufacturing
process and the references related to model development and
validation are listed in Table A1.

3. Advanced hybrid MPC–PID control strategy for continuous
tablet manufacturing process

In a hybrid MPC–PID control structure, the MPC is placed at
supervisory level under which PID is placed as slave controller. The
basis of hybrid control scheme is given in Appendix A2.
3.1. Advanced hybrid MPC–PID control architecture and real time
monitoring tools

The process flowsheet model (Singh et al., 2013a) has been used
to design the control system for direct compaction continuous
tablet manufacturing process prior to implementation into pilot
plant. The model-based control system design is a systematic
procedure that includes the identification of the critical control
variables, pairing of control variables with suitable actuator,
identification of the suitable control algorithm, controller param-
eters identification and finally implementation of the control
strategy into a process model for controller performance evalua-
tion (Singh et al., 2009, 2010a, 2012a, 2013a, 2014a, 2014b). The
configuration of the designed control scheme together with real
time monitoring tools for the direct compaction continuous tablet
manufacturing process is shown in Fig. 1. The list of key control
variables, corresponding manipulating variables and sensors are
listed in Table 1. An ontological knowledge-based system for
selection of monitoring tools has been previously reported (Singh
et al., 2010b). A combination of model predictive control (MPC) and
the more commonly used proportional integral derivative (PID) is
used for the control strategy since MPC is better at handling
process delays and process variable interactions and can be tuned
easily. An NIR sensor was placed at the blender outlet for blend
composition measurement. This is the input for the master
controller, which generates the feeder ratio set point. Based on this

http://www.psenterprise.com
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ratio set point and the total powder flow rate, the individual flow
rate set points for API, excipients and lubricant feeders are
calculated and then controlled by manipulating the respective
feeder RPMs using built-in feeder controllers based on PID logic. In
continuous manufacturing, the powder needs to flow continuously
through each unit operation, therefore, there is no holding step
involved in the current setup of the pilot plant to make sure that
the composition reaches the target before going into next step.
Therefore, we need the real time feedback control system to make
sure that the composition is always within the specified tolerance
limits. However, if the composition violates the specified tolerance
limits because of any reason (e.g. blockage) then the blends need to
be diverted in real time for that interval of time and corrective
actions need to be taken to bring back the blend uniformity within
specification. The instrumented hopper level (placed in between
blender and tablet press) is controlled by manipulating the turret
speed. The hopper level is monitored by webcam. Webcam takes
the image of powder level in real time and passes it to the MATLAB
image analysis toolbox. MATLAB converts the picture to univariate
signal. This is then compared against two calibration points. One
point is the value when there is no powder in the instrumented
hopper (chute) and one when the chute is full with powder. The
first value is 0% level and the second is 100% level. Where the live
value falls between the two calibration points is the calculated
level. The level % is then sent to DeltaV via MATLAB OPC toolbox as
the input to MPC block. The level set point is 50%.

In the tablet press, the tablet weight and hardness are
controlled through a cascade control arrangement using two
master loops and one slave loop. Master loops are used to control
the weight and hardness and provide the set point for the slave
controller, which controls the main compression force by
manipulating the fill depth. They share a common slave
controller, meaning that only one master controller is activated
at a time. The tablet weight is measured and controlled more
frequently. Note that the hardness control loop is activated only
when the measured hardness deviates by a certain percentage
(e.g. 2% of set point) from the desired set point. This is standard
Fette (equipment company) tablet press approach to control
tablet weight and hardness. Check master (Fette) has been used
for tablet weight and hardness measurement in real time. With
the current state of the art sensing techniques, the content
uniformity in the final tablets cannot be measured in real time
(in-line/on-line). However, it can be measured at-line. For
example, an MPA (Bruker) can be used for at-line measurement
of tablet content uniformity. The continuous manufacturing is
known to handle the segregation issues of materials well and
therefore, a good agreement between blend composition and
tablet content uniformity is expected.

3.2. Coupling of PCA based supervisory control system with the hybrid
MPC–PID control architecture

A PCA based supervisory control system has been coupled with
the hybrid MPC–PID control system to ensure that the NIR
prediction is acceptable for feedback control purposes. This
integration was performed only for the control variables
(e.g. API composition) where the spectroscopic sensors has been
used for monitoring. UnscramblerX Process Pulse (CAMO) platform
has been used to calculate the PCA based statistics (e.g. scores,
Hotelling’s T2 and Q residual etc.) in real time and then these values
are passed to DeltaV (Emerson) via synTQ (Optimum). Process
pulse communicates with synTQ via its established coupling
features while synTQ communicates with DeltaV via OPC
communication protocol.

A score plot has been used to measure the total variance in the
data with respect to a calibration set. The score plot provides
qualitative means to trend the variance in sample data. It can also
serve as a visualization of the similarity of samples with respect to
each other, when viewed either as a line or a 2D scatter plot. For
similar samples, if the data points are less scattered and within the
ellipse space then it can be consider as a good prediction. If
significant amount of data points are outside the ellipse area then it
means that the sample data does not match with the calibration set
and prediction may not be reliable and therefore the process needs
to be stopped and either powder material need to be rechecked for
any operational mistake (e.g. incorrect excipient, feeder malfunc-
tion) or the prediction model needs to be recalibrated. Hotelling’s
T2 statistics is used to detect process deviation, potential process
upsets or other measurement issues. The Hotelling’s T2 limit is
calculated based on the calibration samples, and is based on a user-
specified significance level (e.g.1.0, 5.0,10.0% etc.). The limit is used
to detect the outlier for newly measured samples. Data points that
violate this limit are considered as the outliers and need further
investigation. The contribution plots for the Hotelling’s T2 plot
related to these outliers need to be analyzed to identify the root
cause of an outlying sample. Another valuable outlier detection
statistic that has been used is the Q residuals, which are related to
the variance in the variables (e.g. a sample spectrum) that is not
explained by the model being used. The Q residual limit has been
also calculated based on calibration samples and user specified
significance level. The samples violating the Q residual limits could
be outliers and need further investigation to identify the root cause
of violation. Contribution plots indicate the contribution of each
variable to a measured statistics (Hotelling’s T2, Q residuals) and
therefore can be used to identify the variables that cause the
violations. The model’s average values of these statistics have been
compared with the calculated statistics to identify the root causes
of violation. The higher contribution value of the statistics
corresponding to a particular variable is an indication of the
problem with that variable. In case of any violation of Hotelling’s T2

and Q residual limits, first the warning is displayed on control user
interface, then an alarm is generated and finally the actions have to
be taken. The PCA based supervisory control helps to avoid sending
faulty data to the control loops and to take the appropriate
corrective actions.

4. Control hardware and software integration

The control hardware and software required for implementa-
tion of the control system are integrated with the plant for real
time monitoring and closed-loop operation (Fig. 2). The feeders
and blender have been considered here as a demonstrative
example. The complete automation has been achieved through
three stages. In stage 1, the plant hardware/unit operations are
connected with the control platform so that they can be operated
through a centralized control interface. Standard industrial
communication protocols such as Fieldbus or EtherNet/IP can
be used to make these connections (Blevins et al., 2013). Through
this connection, the actuator signals can be sent to the plant as an
input. For example, DeltaV (Emerson) control platform has been
integrated with feeders (Schenck) via DeviceNet and with blender
(Gericke) via serial ports to facilitate automatic operation. In
stage 2, the inline/online sensors have been integrated with the
plant and control platform for real time process monitoring. For
example, an NIR sensor has been integrated at the blender outlet
to monitor API composition through a suitable sampling interface
and with the computer through operating software. The
measured signal is then sent to the control platform. This step
includes the development of a calibration model (for example, see
Vanarase et al., 2010), the integration of the sensor operating
software with the online prediction tools, the integration of the
inline/online prediction tools with the PAT data management tool



Fig. 2. Example of control hardware and software integration.
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and the integration of the PAT data management tool with the
control platform via the OPC communication protocol. Through
this step, the measured signal and any other signals (e.g. alarms,
warnings, etc.) can be sent to the control platform to be recorded
in the historian, and any data from the control platform can be
sent back to the PAT data management tool for data storage,
inspection and auditing purposes. In stage 3, the control-loops
Fig. 3. Implemented controller for drug concentration control (AI: analog input, AO: an
time compensator route.
have been added for automatic feedback plant operation. The
control-loop connects the plant input (actuator) with the plant
output (control variable) through a control algorithm. The input
for the controller comes from the sensors and the output from the
controller goes to the plant. An example of control hardware and
software integration is shown in Fig. 2. As shown in figure, a micro
NIR sensor (JDSU) has been used for API composition
alog output, SCLR: scale-up/down). (1) MPC route, (2) PID route, (3) PID with dead
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measurement. The NIR calibration model is developed in
UnscramblerX (CAMO) and Process Pulse and OLUPX prediction
engine (CAMO) are used for real time prediction of API
composition. A PAT data management tool (synTQ) is used for
data management and storage. An OPC communication protocol
is used to communicate the signal between PAT data management
tool and control platform. The control strategy is implemented in
the control platform and calculates the actuators which are sent
to the plant.

5. Materials and methods

For this study, the excipient and lubricant are placed in a single
feeder and API in a different feeder. In the first feeder APAP (acetyl-
para-aminophenol) (API) is filled and in the second feeder silicified
microcrystalline cellulose (SMCC) (excipient) mixed with 1%
magnesium stearate (MgSt) (lubricant) is filled. SMCC and
magnesium stearate are pre-blended using a batch blender (Glatt)
before being fed to the feeder. The concentration of excipient is
significantly greater than that of the lubricant. Loss-in-weight
feeders (Schenck) have been used. The feeders consist of a hopper,
a load cell that is integrated with a gravimetric controller and a
conveying screw. A co-mill (Glatt) is used for delumping purposes.
Conical screen mills consist of a cone shaped screen with an
impeller inserted into the center. The impeller rotates and material
is ground between the impeller and the screen until it is small
enough to pass through the holes in the screen and leave the mill.
The total inlet flow rate of co-mill is fixed to 20 lb/h. A continuous
convective blender (Gericke), in which the primary mixing
mechanism is convection induced by rotating blades (Portillo
et al., 2008) has been used. The blender speed is fixed to 30% of the
maximum speed. The total inlet flow rate of the blender is 20 lb/h.
A cylindrical chute is used to interface with the NIR for real time
data collection. MicroNIRTM 1700 Spectrometer (JDSU) has been
Fig. 4. Development of NIR calibration model. (a) Absorbance spectra of calibration sam
of spectra.
used to measure the API composition at blender outlet. This is an
ultra-compact, lightweight NIR tool that relies on a linear variable
filter (LVF) as the dispersing element and uses advanced coating
design and manufacturing technology. The wavelength range of
this NIR sensor is 950–1650 nm, typical measurement time is 0.5 s,
minimum integration time is 10 ms and the optimum sample
distance from detector is 3 mm. For this study, the optimal
acquisition parameters were defined as: integration time
40,000 ms, the number of samples averaged per scan 50 and 1 s
for time between scans. IRSE (JDSU) software is used to operate the
MicroNIR. 100% reference was set by placing MicroNIR in contact
with spectralon (99% reflectance) and zero reference was set by
pointing it away from the light. Normalized reflectance values are
computed from the dark, raw 100% reference and raw sample scans
as follows: normalized = (sample � dark)/(reference � dark). Data
are automatically exported to “Process Pulse (CAMO)” chemo-
metric software for real time prediction. A partial least square (PLS)
based model developed in UnscramblerX and a prediction engine
(OLUPX) are used for real time NIR prediction needed to take the
control action. Control limits of �0.15 of set point have been
provided as the acceptable limits.

6. Implementation of a model predictive controller (MPC)

The control variable, “API composition” has been considered
for the demonstration of control loop implementation. The
control strategy has been implemented in DeltaV using its control
studio feature. The MPC toolbox of DeltaV has been used to
implement a supervisory MPC controller above an inbuilt PID
based feeder controller. The implemented MPC controller is
shown in Fig. 3. A simpler PID controller and PID with a Smith
predictor have been also implemented as shown in Fig. 3.
Therefore, the implemented controller is a flexible system
connected with a switch button so that the user can select one
ples. (b) Smoothed spectra of pure components. (c) SNV spectra. (d) First derivative
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control scheme at a time. PID is the simpler control scheme. The
Smith predictor introduces the dead-time compensator into the
PID algorithm. MPC is an advanced controller that has several
advantages over the PID controller. In Fig. 3, the MPC loop is
shown at the top, the PID loop is shown in the middle and the PID
with the Smith predictor is shown at bottom. As shown in the
figure, the ratio set point (CAS_SP) and the measured composition
(API-C) are the inputs to the MPC, PID and Smith predictor blocks
that generate the actuator which goes to a selector block. The
measured signal (from NIR) is obtained from Process Pulse and
synTQ through OPC communication protocol. The measured
signal goes to analog input block (AI) and output of AI block is
input of controller block. The controller output (actuator) goes to
the analog output (AO) block and the output of AO block goes to a
selector block. Note that in MPC scheme (see top of Fig. 3), the
scale-up blocks before and after MPC block have been added to
scale-up the fractional composition signal to the percentage
composition signal before entering to the MPC block and scale-
down the MPC output signal again before sending to the plant
because at higher scale MPC performs better. The scale-up blocks
are not needed in PID and Smith predictor schemes. The selector
block has three total inputs. The first input comes from the MPC
block, the second input comes from the PID block, the third input
comes from the PID with the Smith predictor block. One of these
options will be selected by the selector block. For example, if the
user has selected the MPC, then the first input will be selected.
After the selector block, this input will enter a calculator block
where the dead band has been integrated. The dead band is used
to ensure that the controller output lies within a range. After this
block, the output goes to the ratio controller. The ratio controller
calculates the flow rate set points for the API and excipient
feeders based on the ratio signal and the total flow rate. The API
and excipient flow rates are then controlled through the internal
PID controller by manipulating the screw rotational speed. The
screw rotational speed is sent to the plant from DeltaV using
DeviceNet.

7. Real time inline monitoring of API composition for feedback
control

The API composition has been monitored inline using a
MicroNIR sensor placed at the blender outlet through the window
of a cylindrical chute. From the collected spectrum, the API
composition is predicted using OLUPX 10.2 (CAMO) online
prediction tool and a PLS calibration model. To develop the
calibration model, the pre-blended samples of 10%, 12%, 14%, 15%,
Fig. 5. PCA sc
16%, 18% and 20% APAP were prepared. The sample consists of
APAP, SMCC and 1% magnesium stearate. Raw spectrum data and
pre-processing of the data is shown in Fig. 4. As shown in Fig. 4a,
the absorbance spectrum for these calibration samples in the 900–
1700 nm wavelength range has been collected. The collected
spectrum is then exported to the model development software
(Unscrambler X (CAMO)) to perform pre-processing, PCA and to
build the PLS model. The smoothed spectrum of pure component
(APAP, SMCC, MgSt) is plotted in Fig. 4b. Based on a pure
component spectrums analysis, the wavelength region of interest
for APAP has been identified to be 1030–1230 nm which has been
used to develop the PLS model. To reduce the influence of particle
size, scattering and other influencing factors (Candolfi et al., 1999),
the raw data is pre-processed. Varying particle sizes result in a
baseline shift in the spectra, because the particle size defines the
spectral pathlength. Fig. 4c shows the standard normal variate
(SNV) transformation. SNV transformation has been used to
removes the baseline differences from spectra caused by scatter
and variation of particle size (Barnes et al., 1989; Candolfi et al.,
1999). The transformation is applied to each spectrum individually
by subtracting the mean spectrum and dividing by the standard
deviation. By calculating the derivative spectra, overlapping peaks
have been deconvoluted and the chemical differences enhanced
(Osborne et al., 1993). Fig. 4d shows the first derivative of
spectrum. The figure shows that the peak of each composition is
separated and is in increasing order.

PCA – a tool to reduce multidimensional data to lower
dimensions while retaining most of the information- has been
used to analyze the raw data (Osborne et al., 1993). PCA uses
projections to extract from a large number of variables, a much
smaller number of new variables, which account for most of the
variability between samples (Jørgensen, 2000). Each of the new
variables (principal components) is a linear combination of the
original measurements and therefore contains information from
the entire spectrum. PCA fits new axes (variables) in the data space.
The first axis is chosen in the direction of maximum variability.
This way the amount of information in the first new variable is
maximized. The second axis is chosen to be orthogonal to the first,
so the second new variable is uncorrelated with the first one. This
operation is continued until a sufficient amount of variation is
explained by the new variables. The PCA scores plot of the
calibration samples pre-treated with an SNV and Savitzky Golay
first derivative with 15 smoothing points in the spectral region of
1030–1230 nm is shown in Fig. 5. As can be seen from the in figure,
PC1 explains 91% variance while PC2 explain 8% variance. Each data
point in the scores plot represents a spectra and one color
ores plot.



Fig. 6. PLS NIR calibration model validation. RMSEP = 0.5; RSEP = 3.3%.
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represents the spectrum of a particular API composition. As desired
for a good calibration model, the spectrum of each API composition
is clearly separated in the score plot except very minor overlapping
between spectra of 14% and 16% API composition (see Fig. 5). For
each API composition the within variation among spectra is very
low. Changing from PC2 to PC3 increases explained variance by
only 1.3857% therefore two principal components have been
selected. Further evaluation (loadings) also confirms that at 3PCs
over fitting occurs (result is not shown here).

The developed PLS calibration model has been validated using a
separate validation set of samples. Fig. 6 shows the actual API
composition and the predicted API composition. As shown in the
figure, the model predicts the API composition with reasonable
accuracy. The root mean square error of prediction (RMSEP) is 0.5,
relative standard error of prediction (RSEP) is 3.3% and bias is 0.01.
The developed NIR calibration model is then imported to Process
Pulse (CAMO) for real time API composition prediction using
OLUPX (CAMO) prediction tool.
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8. Linear MPC model identification, controller generation and
MPC parameter tuning

The linear model required for MPC is generated using the
DeltaV predict feature. As shown in Fig. 7, the step changes in
input variables are introduced and based on the effect on output
variables, the linear model is generated. A �3% step change in
input variable (actuator) from nominal value and a guessed time
to steady state (480 s) have been provided as the inputs. Nominal
value of actuator is provided as 15 (% API composition). The
duration of the linear model generation test is based on the
estimated time to steady state and determines the maximum
time duration of pulses generated during testing. When testing is
initiated, the controller output is automatically changed to
generate a series of pulses, the duration of which changes in a
pseudo-random fashion to generate the data for linear model
identification (see Fig. 7). The random step and pulse changes in
actuator are sent to the plant (unit operation: feeders) via
:26 16:02:38 16:09:50 16:17:0 2 16:24:14
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Fig. 8. Verification of linear MPC model performance. (a) Predicted vs experimental. (b) Prediction error with statistics.
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DeviceNet and the corresponding API composition measured by
NIR is plotted as shown in Fig. 7. A moving average of five data
points (15 s of measurement) of NIR signal has been considered to
smooth the signal. Based on input/output response a linear model
is obtained. In this study, a SISO (single input single output)
system has been considered for demonstration purposes. Fig. 7
shows that the NIR signal at blender outlet follows the ratio set
point with process delays and measurement fluctuation. This
figure also shows that the API composition at blender outlet could
be different than the ratio set point which is input to feeders
therefore external NIR based controller is needed. This deviation
could be because of suboptimal performance of the load cell
based inbuilt feeder controllers, any unavoidable minor inaccu-
racy in feeder calibration, segregation in chute, suboptimal
blending, total process dead time, difference in dead times of
feeders, suboptimal performance of feeders screw, minor powder
blockage and any unknown disturbances. These problems can
occur during manufacturing that could affect the desired API
composition of the final tablet therefore this MPC based
supervisory controller is proposed to reject these unknown and
random disturbances.

The process dead time of the generated linear MPC model is
152 s, process gain is 0.500374, first order time constant (time
required for 63.2% of final response) is 70.7099 s and second order
time constant is 6.2132 s. The dead time is more than two times of
first order time constant indicating that the process is dead time
dominant. Note that MPC is more effective in controlling dead
time dominant processes in comparison to regulatory controllers
(e.g. PID). The linear model is then validated with the
experimental data. The performance of the linear model is
shown in Fig. 8. As shown in Fig. 8a, the linear model is able to
capture the peaks of actual experimental data obtained by NIR.
The square of error is 1.04924 and R2 value is 0.7. The other
statistics of the linear model performance is shown in Fig. 8b. As
shown in Fig. 8b, except for few data points the error is within
�2%. As discussed in Appendix A (see Fig. A2, top) the MPC
Table 2
Controller parameters.

Control strategy Gain (KC) Reset time (tI) Rate (KD) Penalty on

Hybrid MPC–PID – – – 3 

PID 0.36 104.2 0.0 – 

PID with Smith predictor 28.63 15.2 0.0 – 
algorithm can take into account the model prediction and plant
mismatch in some extent, therefore MPC is considered to be a
practical approach where perfect matching of the model predic-
tion and plant behavior is practically impossible. Increased model
accuracy is however desired to improve the performance of the
control system. The prediction of the linear model can be
improved by increasing the magnitude of step changes and
increasing the number of cycles in linear model identification
process. However, increasing the number of cycles required more
raw materials to run the plant for longer time and that is limited by
current feeder capacity. For this plant setup, the step size (�3) was
limited by the range (10–20%) of the NIR calibration model and
therefore the controller output (ratio set point) has been changed
only between 12% and 18%. A higher range for the NIR calibration
model is desired but increasing the range an NIR model could
reduce the prediction accuracy therefore this range has not been
increased for this study. Using multiple NIR calibration model
could be a better approach but that involves extra complexities
and could be the subject of future investigation.

The MPC controller is generated using the verified process
model. During controller generation in DeltaV, the MPC param-
eters are automatically set at an optimum value based on the
process model. The linear model generated in this study has been
used to tune the MPC parameters. The controller robustness can be
adjusted by changing the value of penalty on move (PM). The
penalty on move defines how much the MPC controller is
penalized for a change in the manipulated output. High PM values
result in slow controller with a wide stability margin while low PM
values result in a fast controller with a narrow stability margin.
With low PM settings, the control is relatively insensitive to
changes in the process parameters over time or to model error. The
PM value most affects the controller performance when the model
does not match the real process (Blevins et al., 2013). PM is analogy
to the “rate weight” terms commonly known in the control
language. Penalty on error (PE) factor allows more importance to
be placed on a specific controlled variable and normally known as
 move (PM) Penalty on error (PE) Control horizon Prediction horizon

1 5 Inbuilt in DeltaV
– – –

– – –



Table 3
Statistical performance of different control strategies (simulation based).

Criteria Hybrid MPC–PID PID with Smith predictor PID

ITAE 4254 s 4796 s 5221 s
RMSE 1.0343% 1.3254 1.5263%
RSD 0.2844% 0.3378% 0.4231%

Fig. 9. Comparison of MPC performance with PID and PID with Smith predictor.
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“output weight”. Output weight (PE) unity and control horizon 5
has been specified for this study. In order to tune the PM, the value
of PM has been changed and the MPC performance has been
analyzed via the developed linear model. At PM = 3, the perfor-
mance of the MPC was neither very robust nor very sluggish while
at PM = 1, the MPC become extra robust which could lead to poor
performance in real operational scenario. At PM = 10 the MPC is
extra sluggish, that could also lead to the poor performance of the
controller in actual operational scenario. Therefore, the PM value
has been selected to 3. The controller tuning parameters are listed
in Table 2.

For closed-loop performance evaluation, three criteria have
been used. These criteria are integral of time absolute error
(ITAE), root mean square error (RMSE) and relative standard
deviation (RSD). ITAE, RMSE and RSD have been calculated as
follows:

ITAE ¼
Ztf

0

tjCiðtÞ � CsetðtÞjdt

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼0

CiðtÞ � CsetðtÞð Þ2
n

vuut � 100

RSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðCiðtÞ � CðtÞÞ2
N�1
C ðtÞ

vuut � 100

where Ci(t) is the control variable, Cset(t) is the setpoint, t is time, tf
is the operation time, n is the total number of data point, CðtÞ is the
average concentration, N is the number of moving data points for
RSD calculation.
9. Results and discussions

The performance of the control system has been evaluated in
simulation mode prior to running the actual plant in closed-loop
mode. The performance of hybrid MPC–PID, PID and PID with
Smith predictor control schemes are shown in Fig. 9 (simulation
based). The Smith predictor is a dead time compensator (Seborg
et al., 2004). The API composition set point has been changed
from 17% to 12%, 12% to 17% and again 17% to 12%. To evaluate the
disturbances rejection ability of the controller, unmeasured load
disturbances have been also added. The random disturbances
with amplitude 10 and filter time 15 have been added. As shown
in the figure, the hybrid MPC–PID control system brings the API
composition faster at set point, and at steady state gives the least
error. As desired for a good controller, rice time is least in cause of
hybrid MPC–PID controller followed by PID with Smith predictor
and PID control scheme. The statistics of the control loop
performance under different control schemes are given in Table 3.
Integral of time absolute error (ITAE) for hybrid MPC–PID, PID
with Smith predictor, and PID controllers are 4254 s, 4796 s and
5221 s respectively and RMSE values are 1.0343%, 1.3254% and
1.5263% respectively and RSD values are 0.2844%, 0.3378% and
0.4231% respectively. Therefore, hybrid MPC–PID control schemes
relatively gives better performance compared to PID with Smith
predictor and PID control schemes and therefore has been
considered for further analysis.



Fig. 10. Score plot obtained during hybrid MPC–PID based feedback control of the
process.
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Finally, the plant has been run in closed-loop scenario to
validate the different integration scheme and the proposed control
framework. In one feeder API (APAP (acetyl-para-aminophenol)) is
filled and in the second feeder excipient (silicified microcrystalline
cellulose (SMCC)) mixed with 1% magnesium stearate is filled.
Fig. 11. Hotelling’s T2 and Q residual plots obtained during
A JDSU micro NIR sensor has been used to measure the API
composition at blender outlet. A PLS model developed in
UnscramblerX has been used for NIR prediction. Unscrambler
process pulse and a prediction engine (OLUPX) were used for real
time NIR prediction. The API composition was then sent to DeltaV
using OPC communication protocol. MPC uses a linear model and
optimization algorithm to calculate the actuator which is then sent
to a ratio controller as the input. The ratio controller then
calculates the flow rate set point of API and excipient feeders. API
and excipients are then controlled by manipulating the rotational
speed of respective feeders. The blender speed is kept at 30% of the
maximum speed.

The scores plot (for two principal components) obtained during
hybridMPC–PIDbasedfeedback controloperation isshowninFig.10.
As shown in the figure, all the data points are centralized and within
the limits. The green data points are the latest data points. The figure
shows that there is less variance in the data with respect to the
calibration data set and there is no violation of limits. Hotelling’s
scatter obtained during hybrid MPC–PID based feedback operation is
shown in Fig. 11a. The Hotelling’s T2 limit is calculated based on the
calibration samples, and 0.5% specified significance level. As shown
in the figure, no data points violate the Hotelling’s T2 limits which is
an indication to the absence of outliers. Fig.11b shows the Q residual
plot. The Q residual limit has also been calculated based on 0.5%
significance level and calibration sample. The figure shows that the
Q residuals of the new samples are within the specified limit
meaning that there are no outliers detected. Figs. 10 and 11 shows
that therewas no faulty data detected during hybrid MPC–PID based
feedback control operation.

The different variables for example, the set point provided by
the user, signals obtained from the sensors, and signals sent to the
plant are then plotted in the historian of DeltaV. The closed-loop
response of API composition control loop is shown in Fig. 12. The
figure shows the API composition set point, API composition
measured by NIR, filtered API composition signal (average of data
point collected in 15 s) and the actuator response. Filtered API
composition signal is the input for the model predictive controller.
As shown in the figure, the API composition is controlled at 0.17 set
 hybrid MPC–PID based feedback control of the process.



Fig. 12. Closed-loop response of hybrid MPC–PID control scheme.
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point then a step change is introduced from 0.17 to 0.12. The figure
shows that the controller is able to track the step change in set
point. The actuator response is also reasonable. The results
presented here validate that the NIR sensor has been integrated
with the plant. The sensor output has been successfully
communicated with the control platform (DeltaV) via OPC
communication protocol. Real time online prediction of drug
concentration has been made. The controller output has been
communicated with the plant. The process has been verified using
a fixed feeding rate. However, the process can be run at different
feed rate or the feed rate can be changed during operation if
needed. The feeders, mill and blender capacity are the primary
limiting factors for feeding rate. Another limiting factor is the
blender residence time and holdup. There should be sufficient
blender residence time to ensure the desired mixing quantified by
relative standard deviation (RSD). RSD limit is fixed to be 5%. The
blender holdup should be consistent. To ensure the desired blender
holdup, the gate valve at blender outlet can be adjusted.

The performance of slave controller is shown in Fig. 13. The
excipient feeder flow rate set point and achieved profile is shown
in the figure (see the top of Fig. 13). As shown in the figure, the
excipient feeder flow rate oscillates around the set point with a
good accuracy. In order to achieve the desired feeder flow rate, the
screw rotational speed has been changed. The screw rotational
speed excipient feeder is also shown in the figure. The set point and
achieved profile of API flow rate is also shown in Fig. 13 (see the
bottom of the figure). As can be seen in the figure, the slave
controller tracks the API flow rate with good accuracy. The
rotational speed of API feeder is also shown in the figure. The API
and excipient feeders are of different capacity and also have the
different screws to satisfy the different flow rate requirements. The
excipient feeder has more capacity to hold the powder compared
to the API feeder. The type of the screw has been selected based on
the range of powder flow rates that need to be delivered. Excipient
feeder need to deliver higher flow rate than the API feeder. Fig. 13
shows that in order to make the step change in API composition,
the flow rate set point of API and excipient feeders has been
changed smoothly.

The performance of the hybrid MPC–PID control system has
been compared with the performance of base level PID controller
in Fig. 14. In this study, the auto-tuning capability of DeltaV has
been used to tune the PID controller parameters (Blevins et al.,
2013). The set point has been changed from 0.17 (17% APAP) to
0.12 (12% APAP). The acceptable control limits has been specified
to be of set point �0.15. The figure shows that the MPC response
is within the control limits at 17% API composition while the PID
response violates the control limits. When the step change has
been introduced from 17% to 12% API the MPC brings the signal
faster to the new set point in compare to PID controller meaning
that MPC has less rise time in compare to PID. At the new set
point, the MPC response is within the control limits except very
minor violation at two points. PID controller has been selected for
comparison to analyze the advantages of advanced hybrid
MPC–PID control scheme compared to basic level controller.
Note that the performance of both hybrid MPC–PID and PID
control schemes can be further improved by integrating the other
performance improvement techniques and tools. For example,
integrating Smith predictor (dead time compensator) could



Fig. 13. Performance of slave controller.
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improve the performance of PID controller. However, the
performance of Smith predictor is very dependent on the
accuracy of the process model. Any model-process mismatch
can lead to poor performance of the Smith predictor based PID
controller and therefore in powder handling complex process
where a perfect process model is difficult to develop, the
practicality of Smith predictor is limited and subject of further
investigation.
Fig. 14. Comparison of performance of hybrid MPC–P
The deviation of achieved profile from the set point is shown in
Fig. 14. As shown in the figure, the MPC error is within the
acceptable limit except for a short duration where a step change
has been made. The powder at blender outlet needs to be diverted
for this short period of duration. In the case of PID, the error
violates the acceptable limits during most of the operating period.
To quantify the performance of hybrid MPC–PID control scheme,
the integral of time absolute error (ITAE (Seborg et al., 2004)), root
ID control scheme with base level PID controller.



Table 4
Statistics of performance of implemented control system (experimental).

Criteria PID Hybrid MPC–PID

ITAE 14830.03 s 7757.77 s
RMSE 2.88% 2.12%
RSD 2.074% 0.984%
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mean square error (RMSE) and relative standard deviation (RSD)
has been calculated as given in Table 4. The ITAE value of hybrid
MPC–PID control scheme was significantly less (around half)
compared to PID control scheme. The root mean square error was
also significantly less when the plant was running under hybrid
MPC–PID control scheme compared to operational scenario where
PID control scheme was used. The relative standard deviation
which quantifies the blend uniformity is also significantly lower for
hybrid MPC–PID based closed-loop operation than for PID based
closed loop operation. It should be noted that the implemented
control framework includes different options such as the option to
run the plant in an open-loop or a closed-loop scenario.
Furthermore, within the closed-loop scenario, options for a
simpler PID, a dead time compensator (Smith predictor) and an
advanced hybrid MPC–PID controller have been included so that
the users can use any control system as per their convenience and
availability of corresponding methods and tools. The feature to run
the control strategy in simulation mode has also been added in the
control platform that facilitates quick onsite control system design
and performance evaluation (Singh et al., 2014b).

10. Conclusions

For the first time, a hybrid MPC–PID control system has been
developed for a direct compaction continuous tablet manufacturing
Fig. A1. Continuous direct compaction tablet manufactu
process. The PAT tools, control hardware and software integration
and control system implementation have been demonstrated
through a blending unit operation of continuous tablet
manufacturing pilot plant. An NIR tool has been used for real
time automatic hybrid MPC–PID based feedback blending process
operation. An additional level of PCA based supervisory control
system has been also integrated with hybrid MPC–PID based
control architecture to identify the operational faults and to
ensure the suitability of NIR data for control actions. The hybrid
MPC–PID based control scheme shows better performance
compared to a base level PID control scheme. A systematic
flexible control framework for continuous tablet manufacturing
process has been also developed with several novel features,
including the option to run the plant in an open-loop or a closed-
loop scenario. Furthermore, within the closed-loop scenario,
options for a simpler PID, a dead time compensator (Smith
predictor) and an advanced model predictive controller have been
included. The feature to run the control strategy in simulation
mode has been also added in the control platform that facilitates
quick onsite control system design and performance evaluation.
The current and future work includes the implementation of
control loops into other unit operations of continuous tablet
manufacturing process.
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Fig. A2. Hybrid MPC–PID control structure. Bottom part of the figure shows the moving horizon scheme.
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Appendix A.

A1. Pilot plant

The snapshot of the pilot plant is shown in Fig. A1 (whole plant
is not shown).

A2. Hybrid MPC–PID control algorithm

Hybrid MPC–PID control strategy incorporates the advantages
of basic PID control strategy as well as advanced model predictive
controller. As shown in Fig. A2, in cascade hybrid mode, MPC is
placed at supervisory level and provides the set point for slave PID
controller. MPC is based on moving horizon scheme as shown in
Fig. A2. Linear MPC uses a linear process model to predict the
future value of control variable within the prediction horizon. As
opposed to PID in MPC the error is a vector rather than a single
Table A1
Direct compaction tablet manufacturing process model.

Process models 

Feeders 

Mill 

Blender 

Tablet press 

Dissolution 

Integrated direct compaction line 
point (Blevin et al., 2013). The set point can be either constant
value or a time dependent trajectory. As shown in Fig. 2, the error
vector is the deviation of model predicted control variable from
the set point within the prediction horizon. This error vector is
the input to the MPC control algorithm where the objective
function has to be minimized taking into account past actuator
(MPC output), input-output and process constraints and MPC
tuning parameters. Optimization is performed within a predic-
tion horizon and the MPC output is generated with a control
horizon. The first data point of the MPC output provides the set
point of slave PID controller and rest of the data points are
disregarded. As shown in Fig. A2, the value of control variable
(y11) which is measured in real time through an inline/online
sensor (e.g. NIR) and first data point of MPC output (y12_set) are
used to correct the model and plant mismatch. Therefore, the MPC
is known to give a good performance even though the linear model
is not very accurate and there exists a model-plant mismatch.
However, an accurate linear model is always preferred to improve
Useful references
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Barrasso et al., 2013a, 2013b
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the MPC performance. If there are any known process disturbances
that can be measured then these disturbances can be used as the
input of MPC to take account of its effect on process in feed
forward manner. There could be also some unknown process
disturbances that will be rejected automatically through control
action. The dynamic of slave control loop should be easier and fast
so that a simple PID controller can track the set point generated by
master MPC controller. The MPC sub-steps which include error
vector generation, objective function (J) minimization, actuator
trajectory generation, first data point implementation, control
variable measurement, and model-plant mismatch correction is
repeated for each time step therefore the MPC strategy is also
called moving horizon scheme. Moving horizon scheme is also
shown in Fig. A2. As shown in Fig. A2, the control variable is
predicted with prediction horizon and the MPC output is
generated within control horizon. The prediction horizon, control
horizon is also shown in the figure.

The optimization function that needs to be minimized in MPC
can be expressed as follows (Singh et al., 2013a):
(I): the first term represents the weighted sum of squared
deviations (Sy(k)). (II): the second term represents the weighted
sum of controller adjustments (SDu(k)). (III): the third term
represents the weighted sum of manipulated variable deviations
(Su(k)).

k: current sampling interval, k + i: future sampling interval
(within the prediction horizon).

yj: jth control variable, yj
set: set point of jth variable, uj: actuator

for jth control variable.
P: number of control intervals in the prediction horizon. ny:

number of plant outputs.
[yjset(k +i) � yj(k + i)]: predicted deviation for output j at interval

k + i.
M: is the number of intervals in the control horizon. nu: number

of manipulated variables.
Duj(k + i � 1): predicted adjustment in manipulated variable j at

the future (or current) sampling interval k + i – 1.
wy

j: weight for output j (the output weights let you dictate the
accuracy with which each output must track its set point.

wi
Du: rate weight (it penalizes the incremental change rather

than the cumulative value and increasing this weight forces the
controller to make smaller, more cautious adjustments).

wj
u: input weight (this weight helps to avoid large deviation

from the nominal value of actuators).
uj : nominal value of actuator for input j.

A3. Process model of direct compaction tablet man manufacturing
process

The process models of unit operations involved in direct
compaction tablet manufacturing process are listed in Table A1.
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